The functional response of a predatory nematode and the influence of different prey sizes and habitat structure on the concerning parameters were analyzed. We hypothesized that the handling of small prey would be less time-consuming, whereas feeding on larger prey would be more efficient. Therefore, type II functional response curves were expected for large prey and a trend towards type III curves for small prey. We expected the introduction of prey refuges to shift the functional response curves from hyperbolic to sigmoidal and that the effect would be even more pronounced with smaller prey. P. muscorum consumed large amounts of small and large C. elegans, with daily per capita ingestion of prey reaching a maximum of 19.8 µg fresh weight, which corresponds to 4.8 times the predator’s biomass. Regardless of prey size and habitat structure, P. muscorum exhibit a type III functional response. Overall, the allometric effect of prey size had a greater effect on the predator’s functional response than did the addition of substrate, presumably due to the similar body shape and mobility of the two nematode species. Our results demonstrate that individual factors such as feeding behavior are important determinants of functional responses and therefore of ecosystem stability.