In this paper we study Markov-perfect equilibria (MPE) of two-player multimode
dierential games with controlled state dynamics, where one player controls
the transition between modes. Different types of MPE are characterized distinguishing
between delay equilbria, inducing for some initial conditions mode switches
after a positive finite delay, and now or never equilbria, under which, depending on
the initial condition, a mode switch occurs immediately or never. These results are
applied to analyze the MPE of a game capturing the dynamic interaction between
two incumbent firms among which one has to decide when to extend its product
range by introducing a new product. The market appeal of the new product can
be (positively or negatively) in
uenced over time by the competing firms through
costly investments. It is shown that under a wide range of market introduction costs
a now or never equilibrium co-exists with a continuum of delay equilibria, with each
of them inducing a different time of product introduction.