de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Belz, Julian: Fighting the curse of dimensionality with local model networksBekämpfung des Fluchs der Dimensionalität mit lokalen Modellnetzen. 2018
Inhalt
Titelblatt
Acknowledgments
Contents
Symbols and Abbreviations
Latin Symbols
Greek Symbols
Abbreviations
Kurzfassung
Abstract
1 Introduction
1.1 Motivation
1.2 Objectives and Structure of this Thesis
2 Nonlinear System Identification
2.1 Static and Dynamic Models
2.2 Curse of Dimensionality and Bias/Variance Tradeoff
2.3 Local Model Networks
2.4 Input Selection
2.5 Design of Experiments
2.6 Metamodeling
2.7 Static Function Generator
3 Input Selection Using Local Model Networks
3.1 Test Processes
3.2 Mixed Wrapper-Embedded Input Selection Approach
3.3 Regularization-Based Input Selection Approach
3.4 Embedded Approach
3.5 Visualization: Partial Dependence Plots
4 Design of Experiments Studies
4.1 Order Of Experimentation
4.2 Advisability of Specific Experimental Designs
4.3 Goal-Oriented Active Learning with Local Model Networks
5 Applications
5.1 Miles Per Gallon Data Set
5.2 Air-Mass Flow Prediction
5.3 Fan Metamodeling
5.4 Heating, Ventilating, and Air Conditioning System
6 Conclusions and Outlook
Conclusions
Outlook
A Data Splitting
References