de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Masilamani, Kannan: Framework for coupled simulation of electrodialysis processes. 2021
Inhalt
Title Page
Acknowledgements
Zusammenfassung
Abstract
Contents
Nomenclature
Notation
1 Introduction
1.1 State of the Art
1.2 Related works
1.3 Goal of this Thesis
1.4 Structure of this Thesis
2 Mathematical models
2.1 Concentration measures, velocities and diffusive fluxes
2.2 Multicomponent transport equations
2.2.1 Maxwell-Stefan equations
2.2.2 Nernst-Planck equations
2.2.3 Electrical current and Ion transport number
2.3 Mixture flow - Incompressible Navier-Stokes equations
2.4 Electrodynamics - Maxwell's equations
2.5 Conclusion
3 Numerical approaches
3.1 Lattice Boltzmann method for fluid flows
3.1.1 Initial conditions
3.1.2 Boundary conditions
3.2 Multicomponent lattice Boltzmann method
3.2.1 Nonideal liquid mixtures
3.2.2 Boundary conditions
3.3 Membrane black-box model
3.3.1 Assumptions and modeling equations
3.4 Lattice Boltzmann method for the electric potential
3.4.1 Boundary conditions
3.5 Parameterization
3.6 Conclusion
4 Coupling of Multi-Physics Equations
4.1 General set-up for a model of an ED process and its modules
4.2 Coupling of multicomponent LBM and membrane model
4.2.1 Membrane-electrolyte interface
4.3 Coupling of multicomponent LBM and LBM for electric potential
4.4 Conclusion
5 Simulation framework
5.1 Apes overview
5.2 Octree data structure
5.3 Seeder - Mesh generator
5.3.1 Mesh generation with spacer geometry
5.4 Musubi - lattice Boltzmann solver
5.4.1 Domain decomposition
5.4.2 Topology unaware solver data structure
5.4.3 Stream-collide algorithm
5.4.4 Main program
5.4.5 Performance
5.5 APESmate - Integrated coupling tool
5.5.1 Variable system
5.5.2 Space-time function
5.5.3 Coupling algorithm
5.6 Conclusion
6 Numerical validation and verification
6.1 Poiseuille flow
6.2 Stefan tube
6.3 Concentric cylinders
6.4 Taylor dispersion
6.5 Electrical double layer
6.6 Conclusion
7 Results
7.1 Flow simulations with spacers
7.1.1 Spacer geometry
7.1.2 Pure hydrodynamic flow
7.1.3 Multicomponent flows
7.2 Repeating unit in ED stack
8 Summary and Future work
8.1 Summary
8.2 Future work
A Appendix
A.1 Asymptotic analysis
A.1.1 Lattice Boltzmann Method for Fluid Flow
A.1.2 Multicomponent Lattice Boltzmann Method for Nonideal Liquid Mixtures
A.1.3 Lattice Boltzmann Method for Electric Potential
A.1.4 Time Discretization
A.2 Multiple Relaxation Time
A.2.1 D3Q19 model
A.3 Configurations
Bibliography
List of Figures
List of Tables
List of Algorithms