In dieser Arbeit führen wir im ersten Teil eine neue Klasse von stochastischen Prozessen ein, die operator-stable-like Prozesse. Diese verhalten sich lokal wie operator-stabile Prozesse, aber lassen räumliche Inhomogenitäten zu. Die operator-stable-like Prozesse bilden eine Teilklasse der Feller-Prozesse und enthalten als Spezialfall die stable-like Prozesse.
Wir modifizieren das Levy-Maß einer operator-stabilen Verteilung ohne Gaußanteil, sodass der Exponent nicht länger konstant ist, sondern eine matrixwertige Funktion E(x) (x ist ein Element des RR^d) des Ortes ist. Falls der Exponent gewisse Bedingungen erfüllt, definieren wir über diese modifizierte Darstellung eine Familie von Levy-Maßen phi(x,.), die wir operator-stable-like Levy-Maße nennen. Zu dem operator-stable-like Levy-Maß stellen wir eine zugehörige stochastische Differentialgleichung (SDE) auf und zeigen, dass die Lösung dieser SDE ein Feller-Prozess ist. Für symmetrische operator-stable-like Levy-Maße leiten wir eine Symboldarstellung des konstruierten Feller-Prozesses über diese Levy-Maße phi(x,.) her. Den zugehörigen Prozess bezeichnen wir als operator-stable-like Prozess.
Der zweite Teil beschäftigt sich zunächst mit der Untersuchung der Eigenschaften des Symbols der operator-stable-like Prozesse. Wir zeigen eine Skalierungseigenschaft. Aus der Skalierungseigenschaft leiten wir obere und untere Abschätzungen her. Mithilfe dieser Abschätzungen des Symbols analysieren wir mehrere Eigenschaften der Prozesse. Wir bestimmen Maximalabschätzungen, die Existenz von Momenten, das asymptotische Kurz- und Langzeitverhalten der Pfade sowie die p-Variation.