Der Fokus dieser Forschungsarbeit liegt auf der Analyse inverser Probleme der schwingungsbasierten Strukturüberwachung. Strukturüberwachungssysteme helfen u.a. dabei
die Integrität einer Struktur beurteilen zu können oder eine Vorhersage der Restlebensdauer
zu treffen. Im Rahmen dieser Arbeit werden neuartige Überwachungsstrategien
entwickelt und untersucht. Die Ergebnisse zeigen das große Potential von Lösungsansätzen
für dünnbesetzte inverse Probleme in diesem Bereich. Von dünnbesetzten Problemen
spricht man, falls ein Lösungsvektor existiert, welcher nur sehr wenig Elemente ungleich
null besitzt. Solche Lösungsstrategien helfen dabei die benötigte Messinformation zu reduzieren
und die Rekonstruktionsqualität zu steigern bzw. beizubehalten.
Für eine kontinuierliche Strukturüberwachung werden Sensoren permanent an der
mechanischen Struktur angebracht. So könnnen die mechanischen Schwingungen dauerhaft
gemessen werden. Geeignete Algorithmen müssen dann diese Messdaten verarbeiten,
um das gewünschte Überwachungsergebnis zu erzielen. Allerdings spiegeln die
Schwingungsmessungen lediglich die Wirkung einer meist unbekannten Ursache wider.
Zur Überwachung ist daher eine Invertierung des Ursache-Wirkungsprinzips erforderlich.
Das bedeutet, dass die Überwachungsalgorithmen in der Lage sein müssen diese inverse
Problemstellung zu lösen.
Zur Lösung inverser Probleme ist es zweckmäßig Vorkenntnisse der gesuchten Größen
zu berücksichtigen, um mechanisch sinnvolle Ergebnisse zu erhalten. Die charakteristischen
Eigenschaften der Strukturanregung und der Schädensmuster können dazu genutzt
werden, die jeweils auftretende inverse Problemstellung in ein dünnbesetztes Gleichungssystem
zu überführen. Die Lösung solcher Gleichungssysteme kann mittels der
L1-Regularisierung sehr effizient generiert werden.
Speziell für Lastrekonstruktionsverfahren ist durch die Anwendung von L1-minimierenden
Algorithmen eine Lokalisation und eine Kraftverlaufsrekonstruktion mit einer deutlich
geringeren Anzahl an Sensoren als bislang möglich. Die Stabilität der Rekonstruktionsalgorithmen ist auch bei verrauschten Messdaten und Modellabweichungen gegeben.
Für Schadensidentifikationsalgorithmen sind Lösungsstrategien für dünnbesetzte Probleme
ebenfalls gewinnbringend im Hinblick auf die benötigte Messinformation und die
erreichbare Schadensidentifikationsqualität. Dies gilt sowohl für Verfahren im Frequenzbereich,
als auch für Methoden im Zeitbereich. Mit Hilfe von Lösungsstrategien für dünnbesetzte
inverse Probleme ist es außerdem möglich Ansätze für die kombinierte Identifikation
von Strukturschäden und externen Lasten zu realisieren.
Alle untersuchten Rekonstruktionsalgorithmen erreichen eine Reduktion der benötigten
Messinformation, wodurch u.a. ein Beitrag zur günstigeren und praxistauglicheren
Anwendung von Strukturüberwachungssystemen geleistet werden kann.