Intelligente autonome Navigation ist ein wesentliches Problem in der mobilen
Robotik. Für einen modellbasierten Fahrzeug-ähnlichen mobilen Roboter ist das
Steuerungskonzept ähnlich wie beim Auto.
Autonome Feature erlauben Robotern eigene Bewegungen zu kontrollieren ohne
menschliche Interaktion. Drei autonome Feature werden in diese Arbeit behandelt:
Hindernisvermeidung, 180° Drehung in einem schmalen Flur und Pfadverfolgung. Weil die Hindernispositionen unbekannt sind, erfordert die Strategie nicht nur
Hindernisvermeidung, sondern auch Bahnplanung und Roboterlokalisierung.
Die Roboterlokalisierung kann in relative und absolute Lokalisierungen
unterteilt werden. In dieser Arbeit soll die Entwicklung der modellbasierten relativen Lokalisierungstechnik und der absoluten Lokalisierung durch Landmarken untersucht werden.
Die Entwicklung der modellbasierten relativen Lokalisierung wird durch ein
nichtlineares dynamisches Automodell mit nachfolgendem Kalman Filter erreicht. Die Integration der Sensordaten des Entfernungsmessers, Trägheitsgyroskop-Sensors und der Kompass-Sensoren durch den Kalman Filter ermöglicht die Analyse der Leistung der drei Positionierungsmethoden; durch differentiellen Antrieb, Gyroskops- und Kompass-Abschätzung.
Die absolute Lokalisierung wird durch den Einsatz einer 3D-Kamera und 3D-Landmarken erreicht und wird im Folgen der Positionskalibrierung genant. Drei Teile der Positionskalibrierung werden entwickelt: Das Design der Landmarken, die Erkennung der Landmarken sowie die Voraussage und die Aktualisierung der
Roboterposition. Schließlich wird die Verbesserung der Auflösung der
Positionskalibrierungstechnik durch 2D und 3D Bilder untersucht.