Die vorliegende Arbeit beschäftigt sich mit folgendem stochastischen dynamischen
Optimierungsproblem. Ein Entscheider, der seinen erwarteten Nutzen maximiert,
soll eine gegebene Kapazität unter Restriktionen über einen endlichen Zeitraum
verbrauchen. Zu jedem Entscheidungszeitpunkt liegt ein Angebot vor und der Ent
scheider bekommt einen Gewinn in Abhängigkeit von der Höhe des Angebotes und
der verbrauchten Menge. Ziel ist es, den erwarteten Nutzen des Gesamtgewinns zu
maximieren. Im Rahmen dieser Problemstellung werden sowohl multiple optimale
Stoppprobleme als auch Swing Optionen, die beispielsweise in der Energiewirtschaft
eine wichtige Rolle spielen, untersucht.
Das Entscheidungsproblem wird für lineare und exponentielle Nutzenfunktionen mit Hilfe der Theorie Markovscher Entscheidungsprozesse betrachtet. Für einen
risikoneutralen Entscheider mit linearer Nutzenfunktion werden Bedingungen an
die Folge der Angebote gefunden, so dass es Schwellenwerte gibt, die die optimale Strategie bestimmen. Zudem wird das Verhalten der Schwellenwerte betrachtet,
wenn die Laufzeit gegen unendlich geht. Im Fall eines risikoaversen Entscheiders
mit exponentieller Nutzenfunktion ergibt sich eine andere Struktur der Lösung. Die
Randpunkte der zulässigen Menge sind z.B. nicht mehr notwendigerweise optimal.
Außerdem wird untersucht, welchen Einfluss die Risikoneigung des Entscheiders auf
die optimale Strategie hat. Die Resultate werden anhand von einigen Beispielen
illustriert.