Haptisch unterstützte Bedienkonzepte finden gegenwärtig in mobilen Arbeitsmaschinen, wie z. B. Hydraulikbaggern, keine Anwendung. Zurzeit werden diese Maschinen mit hydraulischen Joysticks bedient. Jede Joystickachse steuert einen einzelnen hydraulischen Aktor (z. B. Zylinder), was aufgrund der nicht immer übereinstimmenden Bewegungsarten und -richtungen zu einer wenig intuitiven Bedienung führt. Erst seit der Verfügbarkeit elektrohydraulischer Systeme für den Serieneinsatz sind auch alternative intuitive Bedienkonzepte mit elektronischen Vorsteuergeräten möglich. Diese Konzepte können durch haptisch unterstützte Assistenzsysteme erweitert werden. Haptisch unterstützte Bedienkonzepte zielen auf eine effizientere Mensch-Maschine-Interaktion, eine Reduzierung von Bedienfehlern und eine Verkürzung der Einlernzeit unerfahrener Bediener.
In der vorliegenden Arbeit wird ein Master-Slave-Bedienkonzept für einen Hydraulikbagger vorgeschlagen, welches den Fahrer über haptische Interaktion bei der Maschinenführung unterstützt. Das Bedienkonzept beinhaltet intuitive, aktive Bedienelemente, die eine Alternative zur herkömmlichen Maschinensteuerung mit Joysticks darstellen, und eine bilaterale Reglerarchitektur für das Gesamtsystem, bestehend aus Bagger und Bediengerät. Die Bedienelemente, welche die kinematische Kette des Arbeitsarms nachbilden, versprechen eine intuitive Bedienung der Maschine. Für die ständige Synchronisation der Bedienelemente mit der aktuellen Position des Hydraulikbaggers müssen diese mit Aktoren ausgestattet und positionsgeregelt sein. In der vorgeschlagenen Reglerarchitektur geben sich beide Systeme jeweils gegenseitig die Führungsgröße für die Positionsregelung vor. Der Bediener wirkt als Störung auf das System. Diese Architektur ermöglicht eine stabile Regelung und gibt dem Bediener ein haptisches Feedback der Trägheit des hydraulischen Manipulators. Die Regler für die elektrischen bzw. hydraulischen Aktoren von Bedienelementen und Bagger werden mit Hilfe der Entwurfsmethode Internal Model Control ausgelegt. Dazu wird ein bekannter Ansatz auf integrierende Strecken erweitert. Zur Verbesserung der Regelgüte wird eine Stellgrößenbeschränkung über ein Zustandsvariablenfilter für Systeme mit integrierenden Strecken vorgeschlagen.
Ein weiterer Aspekt der Arbeit ist die Nutzung der Aktoren der Bedienelemente zur Implementierung von haptischen Assistenzsystemen. Diese unterstützen den Fahrer bei verschiedenen Arbeitsaufgaben (z. B. Planieren, Böschungsbau, Kollisionsvermeidung) durch fühlbare Kräfte, die das Bedienelement an den Fahrer zurückgibt.
Um das Bedienkonzept zu verifizieren, wird ein echtzeitfähiger Virtual Reality Baggersimulator und ein mit elektronisch vorgesteuerten Hydraulikventilen, Rapid Control Prototyping Hardware und Sensorik ausgerüsteter Versuchsbagger verwendet. Zur prototypischen Umsetzung der Bedienelemente am Versuchsbagger werden kommerziell verfügbare Bediengeräte, ein SensAble Phantom Omni und ein 3Dconnexion SpaceBall 5000, eingesetzt. Es werden Ergebnisse aus experimentellen Messungen angegeben.
Zur Bewertung des vorgeschlagenen Bedienkonzepts sowie der haptischen Assistenzfunktionen werden Experimente mit Probanden am Versuchsbagger durchgeführt, welche die Intuitivität des Konzepts und die Funktionalität der Assistenzsysteme bestätigen.