The global trends in the construction of modern structures require the integration of sensors together with data recording and analysis modules so that its integrity can be continuously monitored for safe-life, economic and ecological reasons. This process of measuring and analysing the data from a distributed sensor network all over a structural system in order to quantify its condition is known as structural health monitoring (SHM). The research presented in this thesis is motivated by the need to improve the inspection capabilities and reliability of SHM systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave-based approach is driven by the fact that these waves are able to propagate over relatively long distances, interact sensitively with and/or being related to different types of defect.
The main emphasis of the thesis is concentrated on the development of different methodologies based on signal analysis together with the fundamental understanding of wave propagation for the solution of problems such as damage detection, localisation and identification. The behaviour of guided waves for both techniques is predicted through modelling in order to investigate the characteristics of the modes being propagated throughout the evaluated structures and support signal analysis. The validity of the developed model is extensively investigated by contrasting numerical simulations and experiments.
In this thesis special attention is paid to the development of efficient SHM methodologies. This fact requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. Additionally, effects such as temperature variability and operational conditions are experimentally studied in order to analyse their influence on the performance of developed methodologies. At the end, the efficiency of these methodologies are experimentally evaluated in diverse isotropic and anisotropic composite structures.