Ausgehend von den Facettenaugen der Insekten haben Wissenschaftler seit 10 Jahren viele künstliche Facettenaugensysteme erstellt, die auf der Multi-Apertur-Optik basieren. Im Vergleich zu den auf Single-Apertur-Optik basierenden Systemen sind diese Systeme kleiner und leichter. Außerdem haben solche Systeme ein großes Sichtfeld und eine hohe Empfindlichkeit. Das eCley (Electronic cluster eye) ist ein neues künstliches Facettenaugensystem, das Bilder mit Super-Pixel-Auflösung erstellen kann, welches vom Sehsystem der parasitären Wespe „Xenos Peckii“ inspiriert ist. Wegen seiner ausgezeichneten Fähigkeiten sind eCley-Systeme in den Bereichen ärztliche Untersuchung, Identitätsauthentifizierung, Roboternavigation und Flugkörperlenkung angewendet worden. Aber solche Anwendungen basieren nur auf der Datenverarbeitung im 2D-Bereich. Wenn jedoch mit einem eCley-System räumliche 3D-Daten erzeugt werden können, kann man nur mit eCley 3D-Rekonstruktion, Lokalisierung und Entfernungsmessung erledigen, die man vorher mit anderen Geräten durchführen musste.
Zwar können je zwei horizontal benachbarte Mikrokameras im eCley als ein Stereo-Sehsystem genutzt werden, aber es ist nicht leicht, die räumlichen Informationen durch so kleine Kameras zu erhalten. Die von der Mikrokamera gemachten Fotos haben nur eine ziemlich niedrige Auflösung. Außerdem ist die Tiefenveränderung der Szene kleiner als 1 Pixel, wenn die Entfernung größer als 86mm ist, d.h. dass viele verbreitete Algorithmen zum Stereosehen mit eCley nicht gut funktionieren können.
Um die verbreiteten Stereosehalgorithmen mit dem eCley besser anwenden zu können, wurde eine neue Methode dafür im Bereich des Subpixel-Stereosehen erstellt. Diese Methode basiert auf der positiven Eigenschaft des eCleys, dass die Kanten des Ziels im eCley sehr gut behalten werden können. Im Übergang zwischen Bilder benachbarter Mikrokameras gibt es zahlreiche Tiefeninformationen. Mit diesen Tiefeninformationen kann der entsprechende Subpixelabstand ausgerechnet werden. Danach kann die Entfernung des Ziels mit dem Subpixelabstand berechnet werden. Aufgrund der Struktur des eCleys haben wir in dieser Doktorarbeit ein mathematisches Modell des Stereosehens für eCley abgeleitet. Dazu werden die optische Ausrichtung und die geometrische Korrektur, die die Voraussetzungen zur präzisen Messung sind, diskutiert. Zum Schluss haben wir die Subpixel-Baseline-Methode, die auf der Helligkeit und den Gradienten basiert, und die Echtzeit-Messung für den Subpixelabstand, die auf der Eigenschaft der Kanten basiert, entwickelt.
Um unsere Methode zu überprüfen, haben wir viele künstliche und reale Szenenbilder angewendet. Das Ergebnis zeigt, dass unsere Methode die Messung zum Subpixelabstand für Stereopixelpaare ausgezeichnet realisiert hat. Außerdem funktioniert diese Methode in vielen komplexen Umgebungen robust. Das bedeutet, dass die Methode die Fähigkeit des eCleys verbessert hat, die 3D-Umgebung zu erkennen. Das eCley kann daher in verschiedenen 3D-Anwendungsbereichen eingesetzt werden.