Tempered operator stabile Verteilungen sind operator stabile Verteilungen ohne Gaußanteil, deren Levy-Maß so modifiziert wird, dass die Wahrscheinlichkeit der hohen Sprünge kleiner wird. Tempered stabile Verteilungen besitzen Momente beliebiger Ordnung. Auf kurze Zeit betrachtet, verhält sich ein tempered operator stabiler Levy-Prozess wie ein operator stabiler Prozess, während er auf lange Zeit hin eine Brownsche Bewegung approximiert.
Außerdem konstruieren wir eine Irrfahrt, die in Verteilung gegen einen Zufallsvektor mit tempered operator stabiler Verteilung konvergiert. Dabei wurde der Konvergenzsatz für Dreieckssysteme angewendet. Wir zeigen, dass die endlichdimensionalen Verteilungen der zeitstetigen Irrfahrt gegen die von einem tempered operator stabilen Levy-Prozess konvergieren.
Wir leiten eine Reihendarstellung für den tempered operator stabilen Levy-Prozess her. Diese Darstellung kann auch für die Simulation benutzt werden.