Der technologische Fortschritt führt dazu, dass immer mehr Daten erzeugt und verwaltet werden. Dieser Trend lässt sich auch im Kontext des Produktlebenszyklus beobachten. Hier werden während der Nutzungsphase in der Umgebung und am Produkt selbst mit steigender Tendenz Daten mittels Sensoren automatisch erfasst. Aber auch manuell werden durch Betreiber oder Servicemitarbeiter immer mehr Daten in Informationssysteme eingegeben. Diese Daten werden für einen spezifischen Verwendungszweck, wie die Abrechnung von Dienstleistungen genutzt und anschließend archiviert. Dabei kann aus diesen Daten über ihren eigentlichen Verwendungszweck hinaus Wissen zur Verbesserung von Produkten generiert werden, wofür die Basis in der Produktentwicklung gelegt wird.
Eine erfolgreiche Produktentwicklung führt zu qualitativ hochwertigen Gütern und zufriedenen Kunden und damit zu hohen Verkaufszahlen der Güter, was den Unternehmenserfolg auf dem Markt ausmacht. Daher ist die Verbesserung der Produktentwicklung immer wieder Gegenstand der Forschung. Aktuell werden hierzu im Produktlebenszyklus der Produktentwicklung nachgelagerte Phasen, speziell die Nutzungsphase kaum betrachtet. Das Ziel der vorliegenden Arbeit ist es daher einen Wissenstransfer zu realisieren, in dem aus den Produktnutzungsdaten anwendbares Wissen in die Produktentwicklung zurückgeführt wird. Der Fokus liegt dabei auf Industriegütern, bei denen die Feedbackdaten strukturiert in verschiedenen Datenquellen vorliegen und ein enger Kontakt zwischen Kunden und Herstellern gegeben ist.
Zur Verwaltung und Analyse der Daten wird ein Feedback Assistenz System (FAS) konzipiert und entwickelt. Hier werden die Daten aus den verschiedenen Quellen hin transferiert und in ein einheitliches Datenbankschema übertragen. Auf diese zentrale Datenbasis lassen sich wissensbasierte Methoden anwenden u.a. aus dem Bereich des Data Mining. Diese assistieren dem Produktentwickler bei der Verbesserung bestehender Produktgenerationen. Die erfassten und umfangreichen Datenmengen werden verdichtet und Muster werden aufgedeckt, die der Bereitstellung von entscheidungsrelevantem und intuitiv verständlichem Wissen für den Produktentwickler dienen. Im Rahmen der Produktverbesserung sind hierzu explizit drei Bereiche identifiziert worden, in denen die Feedbackdaten erfolgsbringend eingesetzt werden können: die Überprüfung der Kundenanforderungen, die Fehlerdiagnose und die Bewertung von Verbesserungsalternativen. Mittels der Feedbackdaten werden Kosten- und Zeitindikatoren aufgestellt und berechnet zur Überprüfung der Kundenanforderungen mit dem Ziel bei nicht erfüllen den Produktverbesserungsprozess auszulösen. Sodann wird während der Analysephase der Produktverbesserung eine Methode zur Diagnose von Schwachstellen und Fehlerursachen entwickelt und angewandt. Ziel ist hier die Aufdeckung von Verbesserungspotentialen und somit die Senkung der Fehleranfälligkeit von Produkten. Zur Verbesserung des Produktes stehen dem Produktentwickler eine Vielzahl von Alternativen zur Verfügung, die bewertet werden müssen, nach den Zielsetzungen aus der Produktentwicklung und/oder mittels der Feedbackdaten. Hierzu ist eine Methode aus der multikriteriellen Entscheidungstheorie konzipiert und umgesetzt worden.