Thin-Film-on-ASIC- (TFA-) Sensoren nutzen als fotoelektrischen Wandler eine Dünnschicht
auf Basis amorphen Siliziums, die großflächig über das 2-dimensionale kristalline Pixelarray
aufgebracht ist. In der Arbeit werden von integrierenden TFA-Bildsensoren die Grenzeigenschaften
Empfindlichkeit, Dunkelstrom, temporäres und örtliches Rauschen untersucht.
Eine gute Stromempfindlichkeit wird durch optimale Detektorgeometrien erreicht. Parasitäre
Kapazitäten der 3-dimensionalen Anordnung und die gewählte Pixeleingangsschaltung
bestimmen die Wandlungs- oder Spannungsempfindlichkeit.
Dunkelstromanteile sind durch thermische Effekte bzw. durch Feldeffekte bestimmt. Der
Sperrstrom des Detektors, der Leckstrom des Resettransistors und der Leckstrom über das
Treibergate sind zu bewerten. Je nach dominierendem Anteil ändert sich die Temperaturabhängigkeit.
Bei ohmschen Anteilen ist die Dunkelstromverbesserung durch Kühlung vernachlässigbar.
Die Einbindung des Detektorrauschens von Foto- und Dunkelstrom in SPICE ermöglicht die
Bestimmung des Signal-Rauschabstands und des Dynamikbereichs der Pixeleingangsstufe.
Bei der Detektionsschwelle dominiert i. d. R. das Treiberrauschen.
Eine Beschreibung für das Verstärkungs-FPN (PRNU) ist mithilfe der Momentenmethode
dargestellt. Das temporäre Rauschen geht stärker in die Pixeleingangsstufe ein als das örtliche
Rauschen.
Durch die allgemein gültige Beschreibung sind die zentralen Ergebnisse dieser Arbeit für
CMOS- als auch für TFA-Bildsensoren anwendbar.