de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Feldmann, Mark: p-adic Weil group representations. 2018
Inhalt
Introduction
1 Weil Group Representations
1.1 Trivia about the Weil Group
1.2 p-adic Representations
1.3 Mod-p- and Zp-Representations
1.4 Formalism of Admissibility
2 Period Rings
2.1 Perfectoid Fields
2.2 Tilting
2.3 The map
2.4 The Crystalline Period Ring (Bcrys)
2.5 The Ring of p-adic Periods (BdR)
2.6 The Tilted p-adic Logarithm
2.7 GK-Invariants of Period Rings
2.8 The Log-crystalline Period Ring (Bst)
2.9 A Two-Dimensional Representation of GK
3 (B-)Admissible Representations
3.1 Fontaine's Equivalences of Categories
3.2 Log-crystalline Weil Group Representations
3.3 De Rham Weil Group Representations
4 Weil vs Galois group representations
4.1 Lifting Maps from Z to
4.2 Identifying the Galois Group Representations
4.3 Decomposition of Weil Group Representations
4.4 Generators of Abelian Tensor Categories
4.5 Generators
5 (,,F)-Modules
5.1 (,F)-Modules and Mod-p-Representations
5.2 (,,F)-Modules and Mod-p Representations
5.3 Reality Check
5.4 (,F)-Modules and p-adic Representations
5.5 (,,F)-Modules and p-adic Representations
Appendices
A Divided Powers
A.1 Universal Enveloping Divided Power Ring
A.2 Divided Power Envelopes
A.3 Compatibility with Tensor Products
B Slope filtrations
B.1 Slopes
B.2 Filtrations
B.3 Dieudonné-Manin Classification
Bibliography