de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Kuberski, Simon: Standard Model parameters in the heavy quark sector from three-flavor lattice QCD. 2020
Inhalt
Abstract
Zusammenfassung
Contents
1 Introduction
Theory
2 QCD on the lattice
2.1 Gauge action
2.1.1 On-shell improvement
2.1.2 Lüscher-Weisz gauge action
2.2 Fermion action
2.2.1 Wilson fermions
2.2.2 Improved Wilson fermions
3 The Schrödinger functional
3.1 Continuum formulation
3.1.1 Gluon action
3.1.2 Quarks in the Schrödinger functional
3.2 Lattice formulation
3.3 Schrödinger functional correlation functions
3.3.1 Boundary sources
3.3.2 Expectation values
3.3.3 Correlation functions
3.3.4 Flavor off-diagonal bilinears
3.4 Addendum: Open Boundary Conditions
3.4.1 Motivation
3.4.2 Setup
3.4.3 Boundary improvement
4 Operator improvement and renormalization
4.1 Improvement of the action: Revisited
4.1.1 Mass renormalization
4.1.2 Improvement of the coupling
4.2 Operator improvement
4.2.1 Renormalization of improved operators
4.2.2 Improvement of local currents
4.3 Improved quark masses
4.3.1 Renormalization of the bare subtracted quark mass
4.3.2 The PCAC relation
4.3.3 Current quark masses
4.3.4 Relations between renormalized quark masses
4.3.5 The ratio-difference method
5 Algorithmic techniques
5.1 Simulation algorithms
5.1.1 Hybrid Monte Carlo
5.1.2 Integration schemes
5.1.3 HMC with dynamical quarks
5.1.4 Rational Hybrid Monte Carlo
5.1.5 Reweighting
5.2 Frequency splitting
5.2.1 Hasenbusch splitting
5.2.2 Splitting the rational determinant
5.2.3 Twisted mass reweighting
5.3 Solver
5.3.1 Conjugate Gradient solver
5.3.2 Multi-shift Conjugate Gradient solver
5.3.3 Even-odd preconditioning
5.3.4 Block preconditioning
5.3.5 Deflation acceleration
5.3.6 Distance preconditioning
5.4 Errors in Monte Carlo data
5.4.1 Correlations
5.4.2 Slow modes
6 Extraction of physical observables
6.1 Meson masses
6.1.1 The spectral decomposition of correlation functions
6.1.2 Correlation functions and open boundary conditions
6.2 The generalized eigenvalue problem
6.3 Fitting
6.3.1 Fitting correlated data
6.4 Gradient flow observables
6.4.1 The Wilson flow
6.4.2 The Zeuthen flow
6.4.3 Setting a scale from the flow
6.4.4 The gradient flow coupling in the Schrödinger functional
6.4.5 The topological charge from the gradient flow
6.5 Smearing
6.5.1 APE smearing
6.5.2 HYP smearing
6.5.3 Gaussian smearing
6.5.4 Smearing from three-dimensional fermions
6.5.5 Smearing from three-dimensional bosons
7 Heavy Quark Effective Theory
7.1 Continuum HQET
7.1.1 Derivation of the HQET Lagrangian
7.1.2 Heavy Quark Symmetry
7.2 HQET on the lattice
7.2.1 Lattice action
7.2.2 Expectation values at next-to-leading order
7.3 Non-perturbative matching with QCD
7.3.1 Matching in finite volume
7.3.2 Determination of the matching parameters
7.3.3 Quark mass dependence
7.4 HQET observables
7.4.1 The axial current in HQET
7.4.2 The B meson mass
7.4.3 The GEVP in HQET
The line of constant physics for a non-perturbative matching of HQET and QCD
8 Simulations along a line of constant physics
8.1 The line of constant physics: QCD
8.1.1 The running of the coupling
8.1.2 Interpolation of the coupling at fixed L/a
8.1.3 Target precision
8.1.4 Tuning towards the critical hopping parameter
8.1.5 Step scaling to the matching volume
8.1.6 The matching volume
8.2 The line of constant physics: HQET
8.2.1 Tuning in the matching volume
8.2.2 Step scaling towards large volume simulations
8.2.3 Contact to the large-volume simulations
8.3 The running of the mass
8.3.1 The step scaling function of the mass
8.3.2 Determination of RGI quark masses
8.3.3 Determination of the step scaling function
8.4 Conclusions
9 Algorithmic experiences
9.1 Solvers
9.1.1 Quark mass dependence
9.1.2 Tuning of the deflated solver
9.2 RHMC
9.3 Scaling of autocorrelation times
9.3.1 The topological charge in finite volume
Renormalization and Improvement from finite-volume simulations
10 Strategy
10.1 Estimators from time slice averages
10.2 Quark mass parametrization
10.2.1 Redefinition of the estimators
10.2.2 Polynomial interpolations
10.3 The line of constant physics
11 Quark mass improvement in the strongly coupled regime of QCD
11.1 Gauge ensembles
11.1.1 Topological charge
11.2 Results
11.2.1 Mass parametrizations and determination of the estimators
11.2.2 Chiral interpolations
11.2.3 Interpolation in the coupling
11.2.4 Errors and correlations
11.3 Ambiguity checks
11.4 Estimators from time slice averages
11.5 Conclusions
12 Quark mass renormalization for the matching of QCD and HQET
12.1 PCAC masses
12.2 Estimators
12.3 Ambiguities
12.4 Renormalization of the pseudoscalar density and the axial current
12.4.1 Renormalization of the pseudoscalar density
12.4.2 Renormalization of the axial current
12.5 Hopping parameters for constant renormalized quark masses
12.6 Verification of improvement
12.7 Conclusions
The mass of the charm quark
13 CLS ensembles
13.1 The chiral trajectory
13.2 Quark mass shifts
14 Determination of the charm quark mass
14.1 Calibration of the measurements
14.2 The renormalized charm quark mass from current quark masses
15 Lattice computation
15.1 Correlation functions
15.2 Meson masses
15.2.1 Fit ranges
15.2.2 Extraction of the effective mass
15.3 Current quark masses
15.3.1 Fit ranges
15.4 Distance preconditioning
15.4.1 Tuning procedure
15.4.2 Impact on physical observables
15.5 Stochastic sources
15.6 Chiral-continuum extrapolation
15.7 Preliminary result and discussion
HQET in large volume
16 Heavy Quark Effective Theory with open boundary conditions
16.1 Setup of the measurements
16.2 Optimization of the variational basis
16.2.1 Definition of a suitable basis
16.2.2 Reduction of the number of smearing procedures
16.2.3 Variational basis from smearing method
16.3 Boundary effects
16.3.1 Boundary states
16.3.2 Asymmetry in the correlation matrix
17 Computation of the B*Bpi coupling
17.1 Heavy Meson Chiral Perturbation Theroy
17.2 Lattice computation
17.3 Setup
17.4 Results
17.4.1 Plateaus
17.4.2 Chiral-continuum extrapolation
17.5 Discussion
17.6 The matrix element of the first radial excitations
Conclusions
18 Conclusions
A Conventions
A.1 The special unitary group
A.2 Dirac matrices
A.3 Lattice derivatives
B Tables
B.1 The line of constant physics for a non-perturbative matching of HQET and QCD
B.2 Renormalization and improvement from finite-volume simulations
B.3 The mass of the charm quark
B.4 HQET in large volume
Bibliography