de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Winges, Christoph: Filtering the assembly map in algebraic K-theory and transfer reducibility of Z n Z. 2014
Inhalt
Introduction
I Filtering the Assembly Map in Algebraic K-Theory
1 Preliminaries
1.1 Waldhausen categories and algebraic K-theory
1.2 Constructions on simplicial sets and spectra
1.3 Models for the K-theory of additive categories
2 Filtering the algebraic K-theory of group rings
2.1 The category WG(X;K)
2.1.1 Functoriality
2.1.2 The category of Mayer-Vietoris resolutions MVG(X;K)
2.2 The forgetful functor MVG(X) Ch(A[G])
2.3 A glimpse of a spectral sequence
3 Filtering the assembly map
A The homotopy fibration of a filtering subcategory
B Maps of Grothendieck constructions
C Representing elements in the K1-group of an additive category
II Transfer Reducibility of Zn Z
4 Finite group actions with small stabilisers
4.1 Resolving fixed points of simplicial complexes
4.2 Oliver's theorem
5 Applications
5.1 An application in the algebraic K-theory of spaces
5.2 An application in linear algebraic K-theory
Index of notation
Bibliography