de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Kemper, Matthias: Gromov hyperbolic manifolds, weighted isoperimetry and bubbles. 2020
Inhalt
Contents
Introduction
Notation
I Potential Theory on Hyperbolic Spaces
1 Basic Concepts
1.1 Geometric Structures
1.1.1 Bounded Geometry
1.1.2 Gromov Hyperbolic Spaces
1.1.3 Gromov Boundary and Visuality
1.1.4 Connecting Two Points: Harnack and Phi-Chains
1.2 Analytic Structures
1.2.1 Green's Functions
1.2.2 Potentials and Balayage
1.2.3 Weak Coercivity
1.2.4 Martin Boundary
1.3 Hyperbolic Unfoldings
1.3.1 Generalised Distance Functions
1.3.2 Uniform Spaces and d–Bounded Geometry
1.3.3 Quasi-Hyperbolic Geometry
1.3.4 Natural Regularisation of Distance Functions
1.3.5 Operators on Uniform Spaces
2 Potential Theoretic Results
2.1 Local Maximum Principles and Harnack Inequalities
2.1.1 Maximum Principles
2.1.2 Harnack Inequalities
2.2 Global Results from Resolvent Equations and Bounded Geometry
2.2.1 Resolvent Equation
2.2.2 Behaviour of Green's Functions
2.2.3 Relative Maximum Principles
2.3 Hyperbolicity and Boundary Harnack Inequalities
2.3.1 Global Behaviour: Phi-Chains
2.3.2 Boundary Harnack Inequality
2.3.3 The Hyperbolic Martin Boundary
2.3.4 Sharpness
2.4 Ray Expansion of Harmonic Functions
2.5 Application to Uniform Spaces
II Isoperimetry and Bubbles
3 Weighted Linear Isoperimetric Inequalities
3.1 Laplacian and Harmonic Measure
3.2 Onion Cover
3.3 A Weighted Mesoscale Friedrichs Inequality
3.4 Infinitesimal Friedrichs and Isoperimetric Inequalities
3.5 Examples for Weight Functions and Generalisations
3.6 Local Sobolev Inequalities from Friedrichs Inequalities
4 Bubbles and Mean Convex Exhaustion
4.1 Regularity of Bubbles
4.2 Mean Convexity at Infinity
4.3 Mean Convexity from Isoperimetric Inequalities
5 Application to the Conformal Laplacian
5.1 Putting It All Together
5.2 The Singular Yamabe Problem
5.2.1 Submanifolds
5.3 Minimal Hypersurfaces
5.3.1 Potential Theory on Minimal Hypersurfaces
5.3.2 Smale Hypersurfaces
5.3.3 Future Prospects
A Generalised Hypersurfaces
A.1 Perimeter and Caccioppoli Sets
A.2 Currents
Bibliography