Thema der Arbeit ist die Anwendung von Methoden der Beweistheorie auf Termersetzungssysteme, deren Termination mittels einer Simplifikationsordnung beweisbar ist. Es werden optimale Schranken für Herleitungslängen im allgemeinen Fall und im Fall der Termination mittels einer Knuth-Bendix-Ordnung (KBO) angegeben. Zudem werden die Ordnungstypen von KBOs vollständig klassifiziert und die unter KBO berechenbaren Funktionen vorgestellt. Einen weiteren Schwerpunkt bildet die Untersuchung der Löngen von Reduktionsketten, die bei einfach terminierenden Termersetzungssysteme auftreten und bestimmten Wachstumsbedingungen genügen.