Wir definieren den Cotangential-Komplex jeweils im Sinne von Abrashkin [1], Lichtenbaum ; Schlessinger [13] und Messing [14], vergleichen diese drei Konzepte und zeigen, dass sie paarweise zueinander Homotopie-äquivalent sind. Sei Fq[[.]] der Ring der formellen Potenzreihen in einer Unbestimmten X über einem endlichen Körper Fq. Sei NilpFq[[.]] die Kategorie jener Fq[[.]]-Schemata, auf welchen X lokal nilpotent ist. Für ein Basisschema S E NilpFq[[.]] zeigen wir, dass die Kategorie der effektiven lokalen Shtukas über S äquivalent zu der Kategorie der z-divisiblen lokalen Anderson-Moduln über S ist. Letztere Objekte sind Analoga in gleicher Charakteristik BarsottiTate-Gruppen (auch p-divisible Gruppen genannt). Weiterhin zeigen wir, wie man zu jedem z-divisiblen lokalen Anderson-Modul über S eine formelle Lie-Gruppe assoziiert. Schließlich studieren wir die Frage, wann eine formelle Lie-Gruppe ein z-divisibler lokaler Anderson-Modul ist.