Diese Arbeit stellt neue Entwicklungen in Ensemble und Constrained Clustering vor und enthält die folgenden wesentlichen Beiträge: 1) Eine Vereinigung von Constrained und Ensemble Clustering in einem einheitlichen Framework. 2) Eine neue Methode zur Messung und Visualisierung der Variabilität von Ensembles. 3) Ein neues, Random Walker basiertes Verfahren für Ensemble Clustering. 4) Anwendung von Ensemble Clustering für Bildsegmentierung. 5) Eine neue Consensus-Funktion für das Ensemble Clustering Problem. Schließlich 6) Anwendung von Constrained Clustering zur Segmentierung von Nervenfasern in der Diffusions-Tensor-Bildgebung. In umfangreichen Experimenten wurden diese Verfahren getestet und ihre Überlegenheit gegenüber existierenden Methoden aus der Literatur demonstriert.