DNA migration in topologically structured microchannels with periodic cavities is investigated experimentally and with Brownian dynamics simulations of a simple bead-spring model. The results are in very good agreement with one another. In particular, the experimentally observed migration order of [lambda]- and T2-DNA molecules is reproduced by the simulations. The simulation data indicate that the mobility may depend on the chain length in a nonmonotonic way at high electric fields. This is found to be the signature of a nonequilibrium bistability between two different migration states, a slow one and a fast one. The latter can also be observed experimentally under appropriate conditions.