Sei p eine Primzahl, L eine endliche Erweiterung des Körpers Q_p der p-adischen Zahlen, K eine sphärisch vollständige Erweiterung von L und G eine endlich dimensionale, lokal L-analytische Gruppe mit Zentrum Z. In meiner Dissertation leite ich mehrere explizite Beschreibungen des Zentrums der Algebra D(G,K) der lokal analytischen Distributionen auf G mit Werten in K her. Hauptresultat ist die Verallgemeinerung eines Isomorphismus von Harish-Chandra, der für eine reduktive, zerfallende Gruppe das Zentrum von D(G,K) mit der Algebra der Weyl-invarianten, in Z getragenen Distributionen auf einem maximalen Torus von G in Verbindung setzt. Ferner wird die Beziehung zum Bernsteinzentrum der glatten Darstellungstheorie untersucht.
Titelaufnahme
Titelaufnahme
- TitelInvariant distributions on p-adic analytic groups
- Verfasser
- Betreuer
- Erschienen
- SpracheEnglisch
- DokumenttypDissertation
- Schlagwörter (DE)
- URN
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- Nachweis
- IIIF
Dateien
Klassifikation
Zusammenfassung
Abstract
Let p be a prime number, L a finite extension of the field Q_p of p-adic numbers, K a spherically complete extension of L and G a finite dimensional, locally L-analytic group with center Z. In my thesis I derive several explicit descriptions of the center of the algebra D(G,K) of locally analytic distributions on G with values in K. The main result is a generalization of an isomorphism of Harish-Chandra which in the case of a split reductive group connects the center of D(G,K) with the algebra of Weyl-invariant, centrally supported distributions on a maximal torus of G. Moreover, I study the relation between the center of D(G,K) and the Bernstein center of smooth representation theory.
Statistik
- Das PDF-Dokument wurde 7 mal heruntergeladen.