Ausgehend von der Analogie zwischen kristallinen p-adischen Galois-Darstellungen und lokalen Shtukas ([34], [40], [41]), welche dem Studium gewisser arithmetisch-geometrischer Objekte guter Reduktion zuzuordnen ist, wird in dieser Arbeit der Fall semi-stabiler Reduktion studiert: Gesucht ist ein Analogon für Fontaines semi-stabilen Periodenfunktor in der lokalen arithmetischen Theorie gleicher positiver Charakteristik. Es stellt sich heraus, dass eine funktorielle Beziehung zwischen hypothetischen "semi-stabilen lokalen Shtukas" und hypothetischen "z-Isokristallen mit Hodge-Pink-Struktur und Monodromieoperator", welche den kristallinen Fall [34] fortsetzt, nicht in naheliegender Weise zu erwarten ist, was anhand zweier Gegenbeispiele belegt wird. Zu diesem Zweck werden außerdem effektive lokale Shtukas (guter Reduktion) studiert, welche als formelle Komplettierungen aus guten Modellen analytischer Anderson-Motive à la Gardeyn [29], [30] hervorgehen.