Die Supersymmetrie ist eine Erweiterung des Standardmodells der Elementarteilchenphysik und vermag es, einige der dort vorkommenden Rätsel aufzulösen. Hierzu wird die zugrunde gelegte Poincare-Algebra durch eine Graduierung erweitert. Aufbauend auf dem Superraum-Formalismus lässt sich eine nichtabelsche supersymmetrische Feldtheorie formulieren, die die Super-Yang-Mills-Wirkung beinhaltet. Ziel der Arbeit war die numerische Untersuchung des Teilchenspektrums der Theorie. Hierzu wurde die gitter-diskretisierte Form der Wirkung nach dem Konzept von Wilson mit der Curci-Veneziano Fermionwirkung verwendet. Um bessere Symmetrieeigenschaften schon bei endlichen Gitterabständen erreichen zu können, eignen sich Tree-level Symanzik- und STOUT-verbesserte Wirkungen. Zur performanten Realisierung eines Update-Programms für Feldkonfigurationen wurde erstmals für dieses Model ein Hybrid Monte-Carlo Algorithmus mit einer polynomialen Approximation der Fermion-Matrix (PHMC) implementiert.