In der vorliegenden Arbeit wird die Eigenwertgleichung W2+W#=θW, die in enger Beziehung zur Evolutionsgleichung von Krümmungsoperatoren unter dem Ricci Fluss steht, für Weyl Krümmungsoperatoren W untersucht. Es wird bewiesen, dass θ unter gewissen Bedingungen genau dann maximal ist, falls W die Weyl Krümmung von Sm×Sm ist. Desweitern werden unendliche Serien von neuen Lösungen dieser Eigenwertgleichung konstruiert.
Titelaufnahme
Titelaufnahme
- TitelAn algebraic characterization of the Weyl curvature of Sm × Sm
- Verfasser
- Betreuer
- Erschienen
- SpracheEnglisch
- DokumenttypDissertation
- Schlagwörter (DE)
- Schlagwörter (EN)
- URN
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- Nachweis
- IIIF
Dateien
Klassifikation
Zusammenfassung
Abstract
In the present work, the eigenvalue equation W2+W#=θW, which is closely related to the evolution equation of a curvature operator under the Ricci flow, is analyzed for Weyl curvature operators W. A proof that under certain conditions θ is maximal if and only if W is the Weyl curvature of Sm×Sm is given. Moreover, infinite series of new solutions to this eigenvalue equation are constructed.
Statistik
- Das PDF-Dokument wurde 2 mal heruntergeladen.