In dieser Arbeit untersuchen wir Transferprinzipien im Kontext bestimmter Henselsche bewerterter Körper. Zunächst berechnen wir die Bürde --eine Größe, welche mit der modelltheoretischen Komplexität zusammenhängt-- eines bewerterte Körper mittels der Bürde seiner Wertgruppe und seines Restklassenkörpers. Zweitens zeigen wir ein Transferprinzip für die Eigenschaft, dass alle in einer bestimmten Elementarerweiterung realisierten Typen definierbar sind. Die Beweise nutzen einen gemeinsamen Ansatz der darin besteht, zuerst eine Reduktion auf eine Zwischenstruktur zu etablieren, die als Leitkoeffizientenstruktur bezeichnet wird, und dann auf die Wertegruppe und den Restklassenkörper zu reduzieren. Dies erlaubt es uns ähnliche Reduktionsprinzipien wie im Kontext von reinen kurzen exakten Sequenzen abelscher Gruppen zu entwickeln.
Titelaufnahme
Titelaufnahme
- TitelOn transfer principles in Henselian valued fields
- Verfasser
- Betreuer
- Erschienen
- SpracheEnglisch
- DokumenttypDissertation
- Schlagwörter (DE)
- Schlagwörter (EN)
- URN
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- Nachweis
- IIIF
Dateien
Klassifikation
Zusammenfassung
Abstract
In this thesis, we study transfer principles in the context of certain Henselian valued fields. First, we compute the burden --a cardinal related to the model theoretic complexity-- of some valued field in terms of the burden of its value group and its residue field. Secondly, we show a transfer principle for the property that all types realised in a given elementary extension are definable. The proofs use a common approach, which has been developed recently. It consists of establishing first a reduction to an intermediate structure called the leading term structure and then of reducing to the value group and residue field. This leads us to develop similar reduction principles in the context of pure short exact sequences of abelian groups.
Statistik
- Das PDF-Dokument wurde 3 mal heruntergeladen.
Lizenz-/Rechtehinweis