Ist eine gegebene Abbildung zwischen kompakten topologischen Mannigfaltigkeiten homotop zur Projektion eines lokal-trivialen Faserbündels? In dieser Dissertation wird algebraische K-Theorie von Räumen verwendet, um Hindernisse für diese Frage zu konstruieren; deren Verschwinden ist hinreichend dafür, dass die Abbildung stabil fasert. Weitere Resultate sind eine Klassifikation der stabilen Faserbündel in der gegebenen Homotopieklasse sowie die Ausdehnung der Theorie auf das Fasern von Hilbert Q-Mannigfaltigkeiten.
Titelaufnahme
Titelaufnahme
- TitelObstructions to stably fibering manifolds
- Verfasser
- Betreuer
- Erschienen
- SpracheEnglisch
- DokumenttypDissertation
- Schlagwörter (DE)
- Schlagwörter (EN)
- URN
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- Nachweis
- IIIF
Dateien
Klassifikation
Zusammenfassung
Abstract
IIs a given map between compact topological manifolds homotopic to the projection map of a locally trivial fiber bundle? In this PhD thesis obstructions to this question are constructed using algebraic K-theory of spaces; their vanishing is a sufficient condition for the given map to fiber stably. Further results are a classification of the stable fiber bundle projections in the given homotopy class and an extension of the theory to the fibering of Hilbert Q-manifolds.
Inhalt
Statistik
- Das PDF-Dokument wurde 4 mal heruntergeladen.